HEALTH Health News

IIT-Roorke researchers develop nanocomposite to fight antibiotic resistance

Researchers at IIT-Roorkee develop a new eco-friendly nanocomposite that promises to help fight the problem of antibiotic resistance more effectively. The new synthesized nanocomposie is capable of penetrating biofilms that resist the action of antibiotics, and kill microbes.

Roorkee-Uttarakhand (ISW) – Antibiotic resistance is a major problem in the health sector globally. Many times bacteria form biofilms to resist the action of antibiotics. The bacteria do so by adhering together to form a matrix with the help of polymer it produces. Such microbial films are responsible for failure of devices such as catheters and ventilators.

Researchers at Indian Institute of Technology, Roorkee (IIT-Roorkee) have developed a new eco-friendly nanocomposite that promises to help fight the problem of such antibiotic resistance more effectively. The newly synthesized nanocomposite is capable of penetrating these biofilms and kill microbes.

The new compound has been developed by combining silver particles with ĸ-Carrageenan, a polymer derived from red sea weed. The polymer is conventionally used in food products as a gelling, thickening and emulsifying agent.

Silver nanoparticles are already known to have the ability to kill microbes but they are instable and have a short shelf life. Researchers used ĸ-Carrageenan to increase stability and shelf life of silver nanoparticles. They made a solution of ĸ-Carrageenan with silver nitrate and irradiated it in a microwave synthesizer. The nanocomposite thus obtained was found to be very stable and having a long shelf life, while being effective against both Gram-positive and Gram-negative bacteria.

“Capping of silver nanocomposites with ĸ-carrageenan imparts it stability and shelf life up to six months, which is one of the essential features of therapeutic formulations. The nanocomposite shows excellent antimicrobial activity against S.aureus and P.aeruginosa bacterial biofilms,” researchers said. As carrageenan has been widely studied for its antifungal, anti-viral, anti-cancerous and immunomodulatory properties, the nanocomposite based on it can have huge potential in biomedical applications.

The new nanocomposite also has potential applications in food packaging industry as microbial films spoil food products. “We are currently devising cost-effective anti-bacterial wound dressing materials and food packaging materials using the new nanocomposite. We plan to study its efficacy as potent anti-fungal and anti-viral agents too,” said Dr.Krishna Mohan Poluri, a member of the research team.

Related posts

AI helps identify bat species suspected of carrying Nipah virus

ISJ Bureau

Indian startup develops low-cost, non-invasive device to screen newborn hearing

ISJ Bureau

US scientists isolate new molecule from chestnut leaves to neutralise dangerous drug-resistant bacteria

ISJ Bureau

Leave a Comment