HEALTH Health News

IISc researchers find plant-based natural chemical with anti-cancer properties

Researchers at Indian Institute of Science, IISc, Bengaluru have discovered, a chemically synthesized plant based derivate – resveratrol, has possible anti-cancer properties. Resveratrol is a natural chemical produced by several plants when injured or attacked by pathogens such as bacteria or fungi. It is found in the skin of grapes, peanuts, blueberries, raspberries and mulberries.

Bengaluru (Research Matters) – Researchers at Indian Institute of Science, IISc, Bengaluru have discovered, a chemically synthesized plant based derivate – resveratrol, has possible anti-cancer properties. Resveratrol is a natural chemical produced by several plants when injured or attacked by pathogens such as bacteria or fungi. It is found in the skin of grapes, peanuts, blueberries, raspberries and mulberries. It has also been reported in the root of Japanese knotweed (Polygonum cuspidatum), and is an important constituent of traditional Chinese and Japanese medicines.

The study, led by Professor Sathees C. Raghavan of the Indian Institute of Science, IISc, Bengaluru was published in the latest edition of Scientific Reports published by Nature.

Studies have shown that resveratrol protects the heart, fights inflammation, is an anti-aging agent and can be effective against the development of cancers of skin, breast, prostate and lung. Besides, it can also meddle with cellular processes such as the smooth functioning of cell cycle, inflammation and cell death.

A previous research by the same research group at IISc had synthesised a series of resveratrol derivatives and one molecule in particular – SS28 – was found to be the most active in fighting cancer, inspiring further research on its anticancer efficacy.

“Through extensive studies we find that that SS28, can function as an antimitotic agent and inhibit cell proliferation in many cancer cell lines by disrupting the microtubule formation by binding to Tubulin. SS28 treatment resulted in activation of apoptosis in cancer cell lines and mouse tumour tissues. This suggests that SS28 can act as a potent microtubule targeting agent and has a potential to be developed as an anticancer drug,” Dr Raghavan said.

The researchers have explored the mechanism behind SS28’s action on cancer and it affects the cell division of cancerous cells by inhibiting a process called ‘tubulin polymerisation’. Tubulin polymerisation is a process during cell division involving the action of tubulin, a cellular protein that forms microtubules – a major part of the skeleton of the cell. Any disruption to this process can lead to the death of a cell – and if they are cancerous, it can stop their spread.

The researchers conducted experiments to test the sensitivity of leukemic cell lines, human lung carcinoma cells, cervical cancer cells, and lymphoma cells (cancer of the immune system) to various doses of SS28. They observed cell death within 24 hours in some cases and have confirmed that this cell death was not because of cellular stress, but due to successful disruption of a normal cell cycle.

Though SS28 was not capable of complete regression of tumour tissues, it inhibited the spread of tumour without causing significant toxicity in normal cells. SS28 induced disassembly of microtubules with misconfigured chromosomes since it has strong affinity to interact with tubulin, thereby killing all the deadly cancer cells.

“We aim to utilise basic research to unravel molecular mechanism behind cancer and strategies to combat this deadly disease. Towards that, our next step is to take some of the identified molecules for clinical trials”, said Prof. Raghavan on the next phase of this study.

Related posts

Iron and zinc deficiencies can be addressed through simple measures: study

ISJ Bureau

Indian-American scientist develops brain-to-brain communication

ISJ Bureau

India keeps polio at bay

ISJ Bureau

Leave a Comment